
http://home.agh.edu.pl/~horzyk/index-eng.php
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✓ Associative networks and memories 
store and retrieve scene information 
using contextual cues.

✓ Classic associative memories 
Hopfield Networks (HN)
have linear memory capacity.

The significant contribution of this work is 
to demonstrate that a specific type of 

associative knowledge graphs can function 
as semantic memories, even when 

synaptic connections are constrained to 
binary weights (0 or 1).

Knowledge graphs represent 
objects and their relationships.

Graph Neural Networks (GNNs) 
are neural network models 

that operate on graphs.

Active Neuro-Associative 
Knowledge Graph (ANAKG) 

is a form of neural, 
cognitive architecture that 

leverages an associative 
model of neurons.
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Our paper, model, and this presentation:

✓ Demonstrate that the mere sparse structure of the introduced SAKG 
can capture and restore information among its associated objects.

✓ Establish the relationships between the sparsity of the graph 
and the amount of stored information.

✓ Establish conditions that enable flawless
recreation of the stored scenes (without errors)!

✓ Estimate critical dependencies between 

✓ the number of nodes in the graph,

✓ the graph density,

✓ the context size, and

✓ the number of saved scenes.

✓ Show that the sparsity of the graph memory 
allows for a high memory capacity.

✓ Demonstrate how smart sparse associative
structure can replace an extensive training process.

Relationships

Dependencies
Sparsity
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Structural Associative Knowledge Graphs (SAKGs)
• are sparse, transparent, and explainable graphs where all synaptic connections have a weight 

value equal to 1 (strong structural attention);

• are a type of associative knowledge graph that relies solely on the graph structure itself, 
disregarding synaptic connection weights;

• can represent episodes consisting of intricate scenes featuring diverse objects;

• can be used to construct associative memories that store associations between the observed 
events, actions, objects, or their parts;

• can be updated with new scenes at any moment without retraining;

• SAKG density (measured by the ratio of the number of 
used synaptic connections to the total possible 
synaptic connections among the graph nodes) 
is a crucial factor influencing memory storage capacity.

[16] Horzyk, A., Starzyk, J. A., Graham, J.: Integration of Semantic and Episodic Memories, IEEE Transactions on 

Neural Networks and Learning Systems, vol. 28, no. 12, pp. 3084–3095 (2017). DOI: 10.1109/TNNLS.2017.2728203.



5

• SAKG is a graph containing 
many scenes represented 
by cliques consisting of 
a specified number of objects.

• Objects are represented by 
the object neurons 
that are connected to each 
other in every clique.

• If some object neurons are 
activated, we call them 
context neurons.

Stimulated context
neurons

Stimulated
object neurons

Scene defined by 
the object neurons 

(including the 
context neurons)

clique



6

SAKG is constructed from the scenes represented by several objects (here 6):

SAKG after adding the representation (connected neurons in a clique) of scene 1.
SAKG graph density grows with each added scene!
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SAKG is constructed from the scenes represented by several objects (here 6):

SAKG after adding the representation (connected neurons in a clique) of scene 2.
SAKG graph density grows with each added scene!
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• SAKG graph is developed by 
adding scene information and 
recording synaptic connections.

• Nodes in the graph represent 
objects, words, or concepts.

• A large amount of information 
increases density of synaptic 
connections.

• Performed analysis of a SAKG 
density demonstrated the ability 
of a SAKG to capture and restore 
information.

• Investigated relationship between 
SAKG sparsity and amount of 
stored information.

Establishing of 

memory density 

is essential to 

calculate the size 

of the context for 

unequivocal 

scene recovery!
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Def: Knowledge graph memory storage capacity is the maximum number 
of scenes that can be uniquely recalled without errors.

This will be demonstrated by:

• Criteria for error-free and unique scene recall.

• Dependency of storage capacity on graph density, node count, 
and scene and context size.

• Identifying the critical graph density that defines memory capacity.

• Addressing situations with insufficient unique objects generating virtual objects.

• Methods for creating virtual objects (color, position, reflectivity, size, motion, etc.).
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• There is a relationship between knowledge graph density 

and the number of stored scenes.

• Factors affecting knowledge graph density are:

1. Average scene size

2. Number of scenes stored in associative memory

3. Graph size (number of vertices)

• The total number of synaptic connections 

in a dense graph (n-clique) can be calculated after:

𝑒0 =
𝑛∗ 𝑛−1

2
   (1)
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Accumulation of Subgraphs (after adding next scenes):

• The new graph density after adding the next complete subgraph 

(𝑛 – subgraph size, 𝑛𝑓 - number of scene objects):

𝑑𝑖+1 =  
𝑑𝑖 ∗

𝑛 ∗ 𝑛 − 1
2

+ 1 − 𝑑𝑖 ∗
𝑛𝑓 ∗ 𝑛𝑓 − 1

2
𝑛 ∗ 𝑛 − 1

2

• After simplification, the graph density changes 

with each step in the following way: 

𝑑𝑖+1 = 𝑑𝑖 ∗ 1 − 𝜉 + 𝜉

• ξ  is a crucial parameter in this equation:

𝜉 =
𝑛𝑓 ∗ 𝑛𝑓 − 1

𝑛 ∗ 𝑛 − 1
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• The associative knowledge graph (SAKG) serves as 

context-addressable memory, allowing for the retrieval of 

scene memories based on a specific (given) context.

• The memory capacity of the SAKG graph 

depends not only on the size of the stored scenes 

but also on the number of observed context objects.

• The probability of memory retrieval without any errors, 

can be calculated for the given graph density d and 

the size of the retrieval context nc.

• To retrieve the desired scenes uniquely and accurately 

without any errors, the probability of success must be 

greater than 1-ε for a given small positive ε.
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❑ DEF: The critical graph density is the maximum graph density

that allows for all scenes in the SAKG graph to be retrieved 

with an error smaller than any small positive number ε.

❑ The critical graph density can be estimated iteratively using:

𝑑𝑖+1 ≅ −
𝜉∗𝜀

𝑙𝑜𝑔 1−𝑑𝑖

1

𝜁
 𝑖 ∈ 0, ∞   , where 𝑑0=0.5         (8)

where:

𝜁 =
𝑛𝑐 ∗ 𝑛𝑐 − 1

2
and 

𝜉 =
𝑛𝑓 ∗ 𝑛𝑓 − 1

𝑛 ∗ 𝑛 − 1

❑ We got iterative estimation of critical graph density with fast iteration convergence.

𝑛𝑐  - number of 

the context objects 

𝑛𝑓 - number of 

the scene objects
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Thesis 1: For the critical graph density d and a given context, assuming that ξ is small, 

the memory capacity s can be determined by equation (13):

𝑠 =
log 1−𝑑

log 1−𝜉
=

log 1−𝑑

−𝜉
=

log 1−𝑑 ∗𝑛∗ 𝑛−1

−𝑛𝑓∗ 𝑛𝑓−1
      (13)

Factors that influence the memory capacity:

• 𝑑 - Critical Graph Density,

• 𝑛𝑓 - Average Scene Size (no of objects in the scene), and 

• 𝑛 - the number of Graph Nodes



15

𝑠

Context Size
Context Size

❑ Memory Capacity vs. Number of Features for n = 106, 107

❑ Context Size as Percentage of Scene Size

(calculated as ratio of context size and the number of scene objects)

𝑠
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Context Size Context Size

𝑠 𝑠

❑ Memory Capacity vs. Number of Features for n = 108, 109

❑ Context Size as Percentage of Scene Size

(calculated as ratio of context size and the number of scene objects)
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Steps for successful scene recovery and recognition:

1. Randomly select a context oc from each scene os stored in the SAKG graph

and stimulate connected object neurons by these selected context neurons.

2. Determine the set om of maximally stimulated neurons, which are 

the neurons in the SAKG graph that are connected to all context neurons oc.

3. The sum of the context neurons and the maximally stimulated neurons 

recreates the desired scene o = oc U om.

4. If the recreated desired scene o ≠ os, 

then the scene recovery error

is increased by one.

The scene retrieval error rate

is determined by dividing

the scene recovery error by

the number of tested scenes.
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SAKG recovers scenes correctly and unequivocally
if associative memory capacity is large enough for a given context size:

Here, 3 activated context neurons stimulate all connected object neurons to recover 
the strongest associated scene of all stored in the SAKG associative memory.
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SAKG recovers scenes correctly and unequivocally
if associative memory capacity is large enough for a given context size (here 3):

One scene was recovered because the context was large enough (3) for this SAKG memory capacity.
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SAKG recovers scenes correctly and unequivocally
if associative memory capacity is large enough for a given context size:

Here, 2 activated context neurons stimulate all connected object neurons to recover 
the strongest associated scene of all stored in the SAKG associative memory.
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SAKG recovers scenes correctly and unequivocally
if associative memory capacity is large enough for a given context size (here 2):

Two scenes were recovered because the context was not enough large (2) (memory overloaded).
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SAKG scene recovery process is determined by memory capacity and contexts size:

For this SAKG associative memory context size 2 is not enough to recover scenes unequivocally.
We need to use context size 3 or enlarge memory capacity to recovers scene correctly.
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Three different datasets were used to evaluate the 

performance of the SAKG graph for scene retrieval:

1. Randomly generated scenes (symbolic representation) 

with a specified number of objects drawn from 

a specified set of objects.

2. The well-known Iris data set, which specifies 

the length and width of sepals and petals 

in centimeters for three different species of Irises.

3. A dataset of 1,000 scenes each consisting of 25 objects 

(graphical representation), generated and tested using

a deep neural network to detect and recognize objects 

in video signals.



The simulation results that 

confirm minimum context 

for error free retrieval fully 

agree with the theory! ☺
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Randomly Generated Scenes (symbolic representation) of defined objects
• Various sizes of the stored scene set, scene numbers, context sizes, and 

resulting graph densities were tested to validate the theoretical results.

• We stored and used respectively 1200 and 2400 scenes consisting of 15 objects each, 

where each scene was randomly drawn from a population of 1000 graphical objects.

• Theory predicted required context sizes were 5 for 1200 scenes and 7 for 2400 scenes.

• We tested the scene retrieval error level with various contexts provided for retrieval 

using an average of 20 simulations, comparing Context Size vs. Scene Recognition Error:

Errors for various numbers 

of observed context objects 

for 1200 and 2400 scenes.
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Iris Data (150 objects with 50 for each of 3 species):
• Scenes were created using the numerical feature values of different Iris examples, 

along with the Iris species classes, as distinct object names.
• All the scenes (all Iris data) were tested using nc = 4, nf = 5, and n = 126.
• The theory predicted maximum memory capacity with 0.1% error rate was

𝑠 =
log 1 − 𝑑

log 1 − 𝜉
= 92.26 (𝑠𝑐𝑒𝑛𝑒𝑠).

• Since we stored 150 scenes the memory capacity was exceeded (above calculated 
maximum memory capacity 92.26), the average memory retrieval error was 9.8% 
after 20 simulations.

• When Iris data were tested using nc = 5, nf = 5, and n = 126, the error was 0% 
as expected by theory.

Iris Dataset 3D Animation
https://chart-studio.plotly.com/

~amilworks/80.embed

虹膜資料（150 個對象，其中 3 個物種各 50 個）：
使用不同鳶尾花範例的數字特徵值以及鳶尾花物種類別作為不同的物件名稱來建立場景。

所有場景（所有 Iris 資料）均使用 nc = 4、nf = 5 和 n = 126 進行測試。
理論預測的最大記憶體容量為 0.1% 錯誤率

由於我們儲存了150個場景，超出了記憶體容量（上面計算出的最大記憶體容量92.26），
20次模擬後平均記憶體檢索錯誤為9.8%。

當使用 nc = 5、nf = 5 和 n = 126 測試 Iris 資料時，依照理論預期，誤差為 0%。

https://chart-studio.plotly.com/~amilworks/80.embed


Recognition of COCO Scenes with Deep Neural Networks:

• In this experiment we used 1097 unique virtual objects to 
construct 1000 different scenes constructed from 25 objects.

• A deep neural network was used to detect objects.

• The dataset was generated using the COCO data format.

• The maximum capacity of the SAKG scene memory 
using 6 context objects was calculated as 998 scenes 
based on the presented theory.  

• Therefore, after storing 1000 scenes in the memory,
it was expected that some of these scenes will not be 
recognized correctly due to the memory overload.

Fig. One of the scenes was used to define 6 context objects.

'cat 6', 'cat 13', 'cell phone 10', 'toilet 11’, 'zebra 15', and 'zebra 15’.

26

用深度神經網路辨識COCO
場景：

該實驗涉及使用深度神經
網路來識別 1,000 個場景，
每個場景包含 25 個檢測到

的物體。
1097個獨特的虛擬物件被
用來建構不同的場景。
資料集是使用 COCO 資料

格式產生的。
使用 6 個上下文物件的場
景記憶體的最大容量經計
算為 998 個場景。

因此，在記憶體中儲存了
1000 個場景後，預計其中
一些場景將無法正確識別。

圖：其中一個場景
用於定義 6 個上下
文物件。

「類別 6」、「類
別 13」、「手機

10」、「廁所 11」、
「斑馬 15」和「斑
馬 15」。
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Recognition of Scenes with Deep Neural Networks: 使用深度神經網路辨識場景：

Fig. The context provided led to retrieval of two different scenes, having 

the same context of 6 virtual objects (context) located in similar locations.

Retrieval of 2 scenes as the result of overloading the maximum memory capacity:

The left scene includes only the context from the first scene (correctly). Upon observing the right scene, it becomes apparent 

that the context objects listed are positioned similarly to those in the left scene due to the maximum memory capacity overload.
左側場景僅包含第一個場景的上下文（正確）。觀察右側場景後，很明顯，由於最大記憶體容量過載，列出的上下文物件的位置與左側場景中的上下文物件類似。

圖：提供的上下文導致檢索兩個不同的場景，具
有位於相似位置的 6 個虛擬物件的相同上下文。
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Recognition of Scenes with Deep Neural Networks:
• This example highlights the importance of the context size for 

scene retrieval, as the two scenes would be difficult to distinguish 

based on the context (consisting of 6 objects) alone.

• If we increase the context to include 7 objects for this dataset, 

the maximum capacity of this associative memory will rise to 

1429 scenes based on the presented theory, and all the stored 

scenes are correctly recognized.

• A collection of 1000 scenes that were used in this experiment, 

along with a sample program that allows you to 

download any scene, is available at [21] of Paper #186.

使用深度神經網路辨識場景：

這個例子強調了上下文大小對於場
景檢索的重要性，因為僅根據上下

文很難區分兩個場景。

如果我們增加上下文以包含該資料
集的 7 個對象，則根據所提出的理
論，該關聯記憶體的最大容量將升

至 1429 個場景。

根據統計，這使得同一組中的
1000 個場景的識別錯誤少於一個。

因此，在此場景中（使用 7 個物件
上下文），所有儲存的場景都被正

確識別。

本實驗中使用的 1000 個場景的集
合以及允許您下載任何場景的範例
程式可在論文 186 的 [21] 中找到。
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✓ The paper presented a novel structural approach to constructing associative knowledge graphs SAKG 
that can be utilized to create associative memories.

✓ Experiments showed that the SAKG graphs can accurately retrieve stored scenes thanks to the context-
sensitive structure based on associated cliques representing scenes.

✓ The results showed that the SAKG graph can store and retrieve all scenes without error up to the calculated 
critical graph density for a given context size.

✓ The critical graph density was validated experimentally using three different datasets.

✓ This approach enables the achievement of substantial scene-memory capacities by leveraging the sparsity of 
the knowledge graph and modest sizes of recorded scenes.

✓ Memory capacity is determined by the size of the graph and the density of its synaptic connections and 
grows quadratically with the number of SAKG neurons.

✓ Larger graphs have significantly larger scene memory capacity than smaller graphs.

✓ The use of contextual connections in a sparse SAKG graph makes them more effective than traditional 
associative Hopfield networks.
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You are also invited to the second presentation…



33

Recognition of Scenes with Deep Neural Networks:
• This example highlights the importance of the context size for 

scene retrieval, as the two scenes would be difficult to distinguish 

based on the context alone.

• If we increase the context to include 7 objects for this dataset, 

the maximum capacity of this associative memory will rise to 

1429 scenes based on the presented theory.

• Statistically, this allows for less than one recognition error 

for 1000 scenes from the same set. 

• Accordingly, all the stored scenes were correctly recognized 

in this scenario using context of 7 objects.

• A collection of 1000 scenes that were used in this experiment, 

along with a sample program that allows you to 

download any scene, is available at [21] of Paper #186.

使用深度神經網路辨識場景：

這個例子強調了上下文大小對於場
景檢索的重要性，因為僅根據上下

文很難區分兩個場景。

如果我們增加上下文以包含該資料
集的 7 個對象，則根據所提出的理
論，該關聯記憶體的最大容量將升

至 1429 個場景。

根據統計，這使得同一組中的
1000 個場景的識別錯誤少於一個。

因此，在此場景中（使用 7 個物件
上下文），所有儲存的場景都被正

確識別。

本實驗中使用的 1000 個場景的集
合以及允許您下載任何場景的範例
程式可在論文 186 的 [21] 中找到。
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✓ The results of all experiments showed that 

the SAKG graph can accurately retrieve stored scenes 

thanks to the context-sensitive structure based on 

associated cliques representing scenes.

✓ Error rate is low, if the context size is large enough 

allowing for unambiguous recognition of scenes.

✓ The critical graph density was validated 

experimentally using three different datasets.

✓ The results showed that the SAKG graph can store 

and retrieve all scenes without error up to 

the calculated critical graph density.

所有實驗的結果表明，由於
基於表示場景的關聯派系的
上下文敏感結構，SAKG 圖可
以準確地檢索儲存的場景。
如果上下文大小足夠大，允
許明確識別場景，則錯誤率

較低。
使用三個不同的資料集透過
實驗驗證了臨界圖密度。
結果表明，SAKG 圖可以在計
算出的臨界圖密度範圍內無
錯誤地儲存和檢索所有場景。
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✓ The paper presented a novel structural approach to constructing associative 

knowledge graphs that can be utilized to create associative memories.

✓ Memory capacity is determined by the size of the graph and the density of 

its synaptic connections.

✓ Memory capacity grows quadratically with the number of neurons used to build 

the knowledge graph.

✓ Larger graphs have significantly larger scene memory capacity than smaller graphs.

✓ Memory tests conducted using both randomly generated synthetic data and 

real-world datasets confirmed the validity of the derived results.

✓ This approach enables the achievement of substantial scene-memory capacities by 

leveraging the sparsity of the knowledge graph and modest sizes of recorded scenes.

✓ In comparison to traditional associative Hopfield networks, this method proves to be 

more effective thanks to the use of contextual connections in a sparse SAKG graph.

✓ 該論文提出了一種新穎的

結構方法來建立可用於創

建聯想記憶的聯想知識圖。

✓ 記憶容量由圖的大小及其

突觸連結的密度決定。

✓ 記憶容量隨著用於建構知

識圖的神經元數量呈現二

次方增長。

✓ 較大的圖形比較小的圖形

具有更大的場景記憶體容

量。

✓ 使用隨機產生的合成資料

和真實世界資料集進行的

記憶測試證實了派生結果

的有效性。

✓ 這種方法透過利用知識圖

的稀疏性和記錄場景的相

對適中的大小，可以直接

實現大量的場景儲存容量。

✓ 與傳統的關聯 Hopfield 網

路相比，由於在稀疏

SAKG 圖中使用上下文連

接，該方法更加有效。

✓ 未來的工作將集中在將所

提出的結構聯想記憶與現

代 Hopfield 網路進行比較

並使用微柱。
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✓ Developing Semantic Memories in SAKG Graphs

✓ Leveraging Sparse Binary Synaptic Connections

✓ Providing Rapid Construction and Increased Memory 

Capacities in comparison to other approaches.

✓ Examining Structural Properties of SAKG Graphs

✓ Examining Graph Density and Error-Free Scene Retrieval

✓ Establishing Associative Memory Limits

✓ Determining the Influence of Context on Memory Capacity 

in SAKG Graphs

✓ Conducting Experimental Validation on Diverse Datasets

✓ Implications for the Development of Motivated Learning 

in Robots and Artificial Intelligence

✓ 在 SAKG 圖中發展語義記憶
✓ 利用稀疏二元突觸連接

✓ 與其他方法相比，提供快速
建置和增加的記憶體容量。
✓ 檢查 SAKG 圖的結構屬性
✓ 檢查圖密度和無錯誤情境檢

索
✓ 建立關聯記憶體限制

✓ 確定 SAKG 圖中上下文對記
憶體容量的影響

✓ 對不同資料集進行實驗驗證
✓ 對機器人和人工智慧發展動

機學習的影響
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Overall, the paper presents a new and 

promising approach to associative memory 

that has the potential to be used in a variety of 

applications, such as scene retrieval, object 

recognition, and natural language processing.

Future work encompasses:

➢Comparative Analysis with Modern 

Hopfield Networks

➢ Incorporation of micro-columns

➢Using of novel elements (objects)

總體而言，本文提出了一

種新的、有前途的聯想記

憶方法，該方法有潛力用

於各種應用，例如場景檢

索、物件識別和自然語言

處理。

未來的工作包括：
➢ 與現代 Hopfield 網路的
比較分析

➢ 合併微柱
➢ 納入新穎的元素（對象）
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1. How can we apply these insights into 

knowledge graph density to enhance 

scene associative memory systems?

2. Are there specific scenarios in artificial 

intelligence or robotics where this 

knowledge could be particularly beneficial?

3. What further research avenues can be 

explored to refine our understanding of 

knowledge graph density in memory 

systems?

我們如何將這些見解應
用於知識圖密度來增強
場景聯想記憶系統？

在人工智慧或機器人技
術中是否存在這些知識
特別有用的特定場景？

可以探索哪些進一步的
研究途徑來完善我們對
儲存系統中知識圖密度

的理解？
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On the left plane, we have scene neurons 

corresponding to scenes composed of 

objects represented by object neurons.

Object neurons activate a scene neuron by 

the green edges when the stimulation 

context is activated.

Object neurons are of two kinds:

• Yellow neurons represent context that 

is a subset of all objects of the scene.

• Blue neurons represent remaining 

objects of the scene that were activated 

by the context (context neurons).

Object neurons are on the right, rear, and 

bottom planes.

All object neurons of each scene constitute 

a clique – a complete graph in which every 

two vertices are connected by an edge. 

Grey edges connect all object neurons of 

the clique:

+

在左側平面上，我們有與由物件神經元
表示的物件組成的場景相對應的場景神
經元。

當刺激上下文被激活時，對像神經元會
透過綠色邊緣激活場景神經元。

對像神經元有兩種：

黃色神經元代表場景中所有物件的子集
的上下文。

藍色神經元代表場景中被上下文活化的
剩餘物件（上下文神經元）。

物體神經元位於右側、後方和底部平面。

每個場景的所有物件神經元構成一個
團——一個完整的圖，其中每兩個頂點
由一條邊連接。

灰色邊連接團的所有物件神經元：

Scene neurons Object neurons
on the left plane on the right, rear, 

and bottom planes

Scene
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Topology of Hopfield networks, 
with 3 neurons as an example.

Linear transfer functions of 
its neurons characterize 

the linear Hopfield network.

Encoding a pattern in a Hopfield network requires 
to reduce the energy associated with this pattern, 
thereby turning it into an attractor state through 

the application of gradient descent.

This process involves taking the partial derivative of 
the energy with respect to the network's weights, 
a concept referred to as the Hebbian learning rule.

要在 Hopfield 網路中對模式進
行編碼，所需要做的就是減少
與該模式相關的能量，從而透
過應用梯度下降將其轉變為吸

引子狀態。
這個過程涉及到能量相對於網
路權重的偏導數，這個概念被
稱為赫布學習規則。

這個過程涉及到能量相對於網
路權重的偏導數，這個概念被
稱為赫布學習規則。

Hopfield網
路的拓撲，
以3個神經
元為例。

其神經元
的線性傳
遞函數表
徵了線性

Hopfield 網
路。
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Modern Hopfield networks (MHN) 
improve classic Hopfield networks by breaking the linear link 

between input features and stored memories. 
This is done by introducing stronger non-linearities 

in the energy function or neuron activation functions, 
leading to an exponential increase in memory storage 

capacity with respect to the number of feature neurons.

現代 Hopfield 網路 (MHN) 透
過打破輸入特徵和儲存記憶之
間的線性連結來改善經典

Hopfield 網路。
這是透過在能量函數或神經元
激活函數中引入更強的非線性
來實現的，導致記憶體儲存容
量相對於特徵神經元的數量呈

指數級增長。

密
集
的
聯
想
記
憶
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Storage capacity of Modern Hopfield Networks (MHN) 
for retrieval of patterns free of errors is:

C = ~ 2d/2 patterns (exponential capacity),
where d is the dimension of the input,

while having extremely fast conference. 

現代 Hopfield 網路 (MHN) 
用於無錯誤模式檢索的儲存容量為：

C = ~ 2d/2 模式（指數容量），
其中 d 是輸入的維度，
同時擁有極快的會議速度。

經過訓練來儲存多種不同模式的經典
Hopfield 網路 (HN) 的儲存容量為：

C = ~ 0.14 d 模式（線性容量），
其中 d 是網路中神經元的數量。

Storage capacity of classic Hopfield Networks (HN) 
trained to store multiple different patterns is:

C = ~ 0.14 d patterns (linear capacity),
where d is the number of neurons in the network. 

容
量
比
較
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屬性

監督的

分層時間記憶 深度學習

反向
傳播

無監督

希伯來
文學習

數學生物

大量
學習線上學習

訓練需要海量數據非常小的數據就足夠了

前提

學習
機制

學習類型

學習批次

神經元細
胞狀態

批量大小需要學習

In this presentation and 
accompanying paper, we 

will compare SAKG to 
classic associative 

Hopfield Networks. 
The presented method 

proves to be more 
effective thanks to the use 
of contextual connections 

in a sparse SAKG graph.

在本簡報和隨附論文中，
我們將 SAKG 與經典關聯
Hopfield 網路進行比較。
由於在稀疏 SAKG 圖中使
用了上下文連接，所提
出的方法被證明更有效。
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The Thousand Brains Theory of Intelligence states that every part of 
the neocortex learns complete models of objects and concepts 

rather than learning one model of the world. 
It uses Hierarchical Temporal Memory (HTM) for storage and learning. 

Long range connections in the neocortex allow the models to 
work together to create perception of the world.

千腦智力理論指出，新皮質的每個
部分都學習物體和概念的完整模型，
而不是學習世界的一個模型。
它使用分層臨時記憶體（HTM）

進行儲存和學習。
新皮質中的長距離連接使模型能夠
協同工作以創建對世界的感知。

https://www.numenta.com/blog/2019/10/24/machine-learning-guide-to-htm/
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