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v’ Associative networks and memories
store and retrieve scene information
using contextual cues.

v’ Classic associative memories
Hopfield Networks (HN)
have linear memory capacity.

Knowledge graphs represent
objects and their relationships.

Graph Neural Networks (GNNs)
are neural network models
that operate on graphs.

Introduction and Contribution

The significant contribution of this work is
to demonstrate that a specific type of
associative knowledge graphs can function
as J2ulloile gl =5, even when
synaptic connections are constrained to

Active Neuro-Associative
Knowledge Graph (ANAKG)
is a form of neural,
cognitive architecture that
leverages an associative
model of neurons.

binary weights (0 or 1).




Our paper, model, and this presentation:

v

v

Demonstrate that the

of the introduced SAKG
can capture and restore information among its associated objects.

Establish the relationships between the sparsity of the graph

and the amount of stored information.

Establish conditions that enable flawless
recreation of the stored scenes )!

Estimate critical dependencies between
v the number of nodes in the graph,
v'  the graph density,
v"  the context size, and
v the number of saved scenes.

Show that the sparsity of the graph memory
allows for a high memory capacity.

Demonstrate how smart sparse associative
structure can replace an extensive training process.

*
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Relationships

Dependencies



ledge Graphs

Structural Associative Know

e aresparse, transparent, and explainable graphs where all synaptic connections have a weight
value equal to 1 ( );

e are a type of associative knowledge graph that relies ’
disregarding synaptic connection weights;

e can represent episodes consisting of intricate scenes featuring diverse objects;

e can be used to construct that store associations between the observed
events, actions, objects, or their parts; . R

* can be updated with new scenes at any moment without retraining; O ° . . .

* SAKG density (measured by the ratio of the number of . ) . - e .
used synaptic connections to the total possible . //////
synaptic connections among the graph nodes) ° ° \//

is a crucial factor influencing memory storage capacity.

[16] Horzyk, A., Starzyk, J. A., Graham, J.. Integration of Semantic and Episodic Memories, IEEE Transactions on 47
Neural Networks and Learning Systems, vol. 28, no. 12, pp. 3084-3095 (2017). DOI: 10.1109/TNNLS.2017.2728203 j4f o




SAKG Structure

SAKG is a graph containing
many scenes represented
by cligues consisting of ° ®

. . Scene defined by
a specified number of objects. ® the object neurons

(including the.

Objects are represented by @ context neurons)

the object neurons
that are connected to each

other in every clique.
Stimulated context

If some are neurons
activated, we call them /
context neurons. =l '\

—
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//

)




SAKG Structure Construction

SAKG is constructed from the scenes represented by several objects (here 6):

of the specified number of represetation as a clique of
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SAKG after adding the representation (connected neurons in a clique) of scene 1.
| SAKG graph with each added scene!



y SAKG Structure Construction

SAKG is constructed from the scenes represented by several objects (here 6):

of the specified number of represetation as a clique of
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SAKG after adding the representation (connected neurons in a clique) of scene 2.
SAKG graph with each added scenel 77 4



SAKG Structure and Graph Density

2

graph is developed by
adding scene information and
recording synaptic connections.

in the graph represent
objects, words, or concepts.

* Alarge amount of information
of synaptic
connections.
e Performed analysis of a
demonstrated the ability
of a SAKG to capture and restore
information.

* Investigated relationship between
and

N

N




Memory Storage Capacity and
Critical Graph Density

Def: is the maximum number
of scenes that can be uniquely recalled without errors.

This will be demonstrated by:
* Criteria for error-free and unique scene recall.

 Dependency of storage capacity on graph density, node count,
and scene and context size.

e |dentifying the that defines
e Addressing situations with insufficient unigue objects generating virtual objects.

 Methods for creating virtual objects (color, position, reflectivity, size, motion, etc.).



Knowledge Graph Density
in Scene Associative Memory

* Thereisa between knowledge graph density
and the number of stored scenes.

affecting knowledge graph density are:
1. Average scene size

2. Number of scenes stored in associative memory °
3. Graph size (hnumber of vertices) /

_~
* The total number of synaptic connections » ./

in a dense graph (n-clique) can be calculated after:
\E e, = ”*(’;‘1) (1) \




Knowledge Graph Density
in Scene Associative Memory

Accumulation of Subgraphs (after adding next scenes):

e The after adding the next complete subgraph
(1 — subgraph size, n¢ - number of scene objects):

- -1
*n*(g 1)+(1_di)*nf*(7;f )

nx(n-—1)
2

e After simplification, the changes
with each step in the following way:

= (1=

is a crucial parameter in this equation:

N _npx(np—1)
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Dependence on the Size of the Context

 The associative knowledge graph (SAKG) serves as
, allowing for the retrieval of
scene memories based on a specific (given) context.

@
of the SAKG graph o
. <7
depends not only on the size of the stored scenes //'
but also on the number of observed context objects. o /
* The probability of , \ /
can be calculated for the given graph density d and O

the size of the retrieval context n..

* To retrieve the desired scenes uniquely and accurately

N
, the probability of success must be
\ greater than for a given small positive -.




Critical graph density

DEF: The critical graph density is the maximum graph density
that allows for all scenes in the SAKG graph to be retrieved
with an error smaller than any small positive number

The critical graph density can be estimated iteratively using:

activated scene neuron stimulated by
the maximally stimulated object neurons

unactivated scene neurons (unstimulated)
stimulated context neuron representing
a subset of scene objects

activated object neuron forming
a clique with context neurons

maximaly stimulated object neurons

f % 3 stimulating the scene neuron (here 3)
" * : _ ivated obj
di+1 — (_ log(l—d-)) l E [0) OO) ’ Where dO_O'5 (8) ® ?un:sitix?ltlztez li?{ctthr;e:;:?extneurons)
t -maximaly stimulated obj
where: o ° © by the context neurons (here 2)
n. - number of o O
ne (nc _ 1) ¢ o o
= > the context objects e y = *
° o °
and ns - number of ° S/ \ °
° ® //. °
./
é’ — ® [ ) ./ ®
nx(n-—1)
o

We got iterative estimation of critical graph density with fast iteration convergence.




Maximum Memory Capacity

Thesis 1: For the critical graph density d and a given context, assuming that £ is small,
the can be determined by equation (13):

_ log=d) _ log1=d) _ logi-d)mr(n=1) 1
T log1-9)  —&  —npx(np-1)

Factors that influence the
* d - Critical Graph Density,
* 1y - Average Scene Size (no of objects in the scene), and

* n -the number of Graph Nodes
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Scene Recovery

\lgorithm

° activated scene neuron stimulated by
the maximally stimulated object neurons

Steps for successful scene recovery and recognition: o

° stimulated context neuron representing
a subset of scene objects

unactivated scene neurons (unstimulated)

1. Randomly select a context o_ from each scene o, stored in the SAKG graph

and by these selected context neurons. e e L
2. Determine the set , Which are 5 Maximaly stimulated object neurons
. stimulating the scene neuron (here 3)
the neurons in the SAKG graph that are connected to all context neurons o_. @ Unactivated objectneuron
3. The sum of the context neurons and the (unstimulated by the context neurons)
. 0 non-maximaly stimulated object neurons
recreates the desired scene o = O, U O, ~ ° by the context neurons (here 2)
4. If the recreated desired scene o0 # o, PS ~
° o
then the scene [
is increased by one. ~ ® ° 3 //o
The scene ° ~ ?
is determined by dividing
3
the scene by

the number of tested scenes.




Scene Recovery Example
SAKG recovers scenes correctly and unequivocally

if is large enough for a given context size:
of the specified number of Stimulation of 3 context neurons to recover a

.‘ ® ¢ 6 &6 6 6 6 6 & O
® O

Here, 3 activated context neurons stimulate all connected object neurons to recover
the strongest associated scene of all stored in the SAKG associative memory.




y Scene Recovery Example
= SAKG recovers scenes correctly and unequivocally

if is large enough for a given context size (here 3):
of the specified number of represetation as a clique of
® ¢ 6 ¢ ¢ 6 ¢ & o O :
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One scene was recovered because the context was large enough (3) for this SAKG

N



Scene Recovery Example
SAKG recovers scenes correctly and unequivocally

if is large enough for a given context size:
of the specified number of Stimulation of 2 context neurons to recover a

Here, 2 activated context neurons stimulate all connected object neurons to recover
the strongest associated scene of all stored in the SAKG associative memory.

4




Scene Recovery Example
SAKG recovers scenes correctly and unequivocally

is large enough for a given context size (here 2):
of the specified number of represetation as a clique of
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Two scenes were recovered because the context was not enough large (2) ( ).
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Scene Recovery Example Comparison

SAKG scene recovery process is determined by N e e B

w

of the specified number of timulation of 3 context neurons to recover a of the specified number of
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For this SAKG associative memory context size 2 is not enough to recover scenes unequivocally.
We need to use context size 3 or to recovers scene correctly.




Experiment Overview Results

Three different datasets were used to evaluate the
performance of the SAKG graph for scene retrieval:

1. Randomly generated scenes (symbolic representation) ‘
with a specified number of objects drawn from
a specified set of objects.

2. The well-known Iris data set, which specifies
the length and width of sepals and petals
in centimeters for three different species of Irises.

3. A dataset of 1,000 scenes each consisting of 25 objects
(graphical representation), generated and tested using
a deep neural network to detect and recognize objects

N . - c
E in video signals.




=
Randomly Generated Scenes (symbolic representation) of defined objects

Various sizes of the stored scene set, scene numbers, context sizes, and
resulting were tested to validate the theoretical results.

We stored and used respectively

Theory predicted

were - for

® Overview Results of Experiment 1

i/‘

i
i

consisting of )
where each scene was randomly drawn from a population of

and / for :
We tested the scene retrieval error level with various contexts provided for retrieval \

Number of observed objects
Scene recognition error in %

Testing time in sec

Number of observed objects
Scene recognition error in %

Testing time in sec

using an average of 20 simulations, comparing Context Size vs. Scene Recognition Error: /

0.002

174

The simulation results that
0.446 confirm minimum context

for error free retrieval fully
50.0 agree with the theory! ©

0.079
287
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Overview Results of Experiment 2

Iris Data (150 objects with 50 for each of 3 species): T

* Scenes were created using the numerical feature values of different Iris examples, S N B
along with the Iris species classes, as distinct object names.

* All the scenes (all Iris data) were tested using n_=4, n,=5, and n = 126.

* The theory predicted with 0.1% error rate was
log(1 —d)
S pu— ju—
log(1 —¢)
* Since we stored JEERGE (above calculated
maximum memory capacity ), the average memory retrieval error was

after 20 simulations.
* When Iris data were tested using n_=5, n;=5, and n = 126, the error was

as expected by theory. STREZERL (150 (HEHS: » S5 3 (EVIRES 50 (B) °
{5 PR B B A D R 75 TE BRI B R A A T -
B (P Iris Z0EL) 08 nc =4 « nf =5 il n = 126 (7151 - . — /)
B TR B A ST S R A By 0.1% SiasisR ris Dataset 3D Animation 7z
B PEE7 T 150(BE R - ML T SR ( LS F Rt R 2 592,26 )
20 A VT30 A R R B F49.8% -
S nc=5 « nf=5 Al n = 126 S5 Iris 2RI » (KIGHESATEL S35 5 0% -
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-Overview Results of Experiment 3
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Recognition of COCO Scenes with Deep Neural Networks:

* In this experiment we used 1097 unique virtual objects to
construct 1000 different scenes constructed from 25 objects.

A deep neural network was used to detect objects.
 The dataset was generated using the COCO data format.

* The of the SAKG scene memory
using 6 context objects was calculated as
based on the presented theory.

 Therefore, after storing in the memory,
it was expected that some of these scenes will not be
recognized correctly due to the

D Hop— {5
HAREZE 6 {E LT
XY o
"HERl6, ~ THH
Al13, ~ "
10, ~ "HiFT11, -
"BLRE 15 AT BR
815, -

Fig. One of the scenes was used to define 6 context objects.
'cat 6', 'cat 13', 'cell phone 10', 'toilet 11°, 'zebra 15', and 'zebra 15°.
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Overview Results of Experiment 3

Recognition of Scenes with Deep Neural Networks: (i /%S s 4gg RS &
Retrieval of as the result of

SR ‘..‘
|
REMOTE 2 g 3
- . -

N 6 virtual objects (context) #

The left scene includes only the context from the first scene (correctly). Upon observing the right scene, it becomes apparent

that the context objects listed are positioned similarly to those in the left scene due to the
FZREAEE—ESRMLTX (EH) . BR6AER% RUAHR BHREATLRESEEH, JHM L TXYHAMERERSR P ETXXMEEREL,




Recognition of Scenes with Deep Neural Networks:

This example highlights the importance of the context size for
scene retrieval, as the two scenes would be difficult to distinguish
based on the context (consisting of 6 objects) alone.

If we increase the context to include 7 objects for this dataset,
the of this associative memory will

based on the presented theory, and all the stored
scenes are correctly recognized.

A collection of 1000 scenes that were used in this experiment,
along with a sample program that allows you to
download any scene, is available at [21] of Paper #186.

- Overview Results of Experiment 3
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Conclusions

//
N\

The paper presented a novel structural approach to constructing SAKG
that can be utilized to create associative memories.

Experiments showed that the SAKG graphs thanks to the context-
sensitive structure based on associated cliques representing scenes.

The results showed that the SAKG graph can store and retrieve all scenes up to the calculated
for a given context size.

The was validated experimentally using three different datasets.

This approach enables the achievement of substantial scene-memory capacities by leveraging the of
the knowledge graph and modest sizes of recorded scenes.

Memory capacity is determined by the size of the graph and the density of its synaptic connections and
grows quadratically with the number of SAKG neurons.

Larger graphs have significantly larger scene memory capacity than smaller graphs.

The use of in a sparse SAKG graph makes them more effective than traditional
associative Hopfield networks.
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- Overview Results of Experiment 3

Recognition of Scenes with Deep Neural Networks: N .
= > . S ) B R R B T Bt
e This example highlights the importance of the context size for o ) i
scene retrieval, as the two scenes would be difficult to distinguish %’E—;g;ggéi%@%%ﬁi?

based on the context alone. SAREREE 7 5
e If we increase the context to include 7 objects for this dataset, ARFATE NN L T XA EZ &R
: . ’ ) MY 7 (B35 - AIFREEFTEE YRR
the of this associative memory will =6 s Sy RE T R B B A A S T
based on the presented theory. % 1429 {E5R -
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1000 ST FE28 DT -

AL > SRS (A 7 @91
e Accordingly, all the stored scenes were correctly recognized ER3)  FrA R FRITS R AR

e Statistically, this allows for
from the same set.
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in this scenario using context of 7 objects.
_ . _ _ AREEEFERIAY 1000 {E5 RIS
e A collection of 1000 scenes that were used in this experiment, & DA SeEF I N s ([ = Y #Ei ]
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along with a sample program that allows you to L G
download any scene, is available at [21] of Paper #186. M H




verview Results

Experiments O

v" The results of all experiments showed that FrA ZESy4E B0 > FiR

the SAKG graph can accurately retrieve stored scenes  fhpAs=scio = p0pHmE 2 0
thanks to the context-sensitive structure based on B EEGERE 0 SAKG [E] |

associated cliques representing scenes. DUEREH MR RS -
WEHR LN SOR/INEFTR 1
SRR A - AISEAR

v’ Error rate is low, if the context size is large enough
allowing for unambiguous recognition of scenes.

KK o
v’ The was validated @ﬁﬁ (ERE &R 5
experimentally using three different datasets. Hhulnsg A E Hﬁfu

4ok H = =
v The results showed that the SAKG graph can store ﬁ?ﬁ?? %SAKEﬁ ® U\Ijgj:tt
a VARYY

and retrieve all scenes without error up to SN 4 ok R P LA ELEL

the calculated :
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Exteded Conclusions

v' The paper presented a novel structural approach to constructing

v

that can be utilized to create associative memories.

Memory capacity is determined by the size of the graph and the density of
its synaptic connections.
Viemory capacity grows quadratically with the number of neurons used to build

the

Larger graphs have significantly larger scene memory capacity than smaller graphs.
Memory tests conducted using both randomly generated synthetic data and
real-world datasets confirmed the validity of the derived results.

This approach enables the achievement of substantial scene-memory capacities by

leveraging the

In comparison to traditional associative Hopfield networks, this method proves to be

more effective

of the knowledge graph and modest sizes of recorded scenes.
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Key Findings and Contributions
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ways and Future Work

! Key Takea
A

Overall, the paper presents a new and SRS S > A 7 —
promising approach to %—i‘-ﬁﬁﬁ Zﬁﬁuﬁéﬁﬂyﬁﬁn
that has the potential to be used in a variety of WRIIE > IR jjﬁﬁ
applications, such as scene retrieval, object RSIEIEH - PSR
. ) ’ . R~ VIR E 2SE S
recognition, and natural language processing. P .
Future work encompasses: .
» Comparative Analysis with Modern ﬂ%ﬂzmi@ U
Hopfield Networks SEN Hoptield (RS
prier = . LAz
> Ingorporatlon of mlcro—columns > AR
» Using of novel elements (objects) > I AEEINTE (He)



y Questions for Consideration
/‘

1. How can we apply these insights into (9] Y s
knowledge graph density to enhance EA%D?% =] 2% FE A I B
scene associative memory systems? SRS e A= f—f%g\;ﬁ ?

2. Are there specific scenarios in artificial F N T EEE S BE L F
intelligence or robotics where this iEES Y eV e =y astia] =5,
knowledge could be particularly beneficial? FirIE IR ES = ?

3. What further research avenues can be B DIERR IR 1 —2
explored to refine our understanding of aEawas «(“Hﬁéﬁiﬂaﬁf
knowledge graph density in memory ST Z 8 PRk 2 e

i systems? S 7 i



oW, Fragment of a SAKG \
with an activated single scene on the left plane N\
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On the left plane, we have
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are of two kinds:

Yellow neurons represent context that
Is a subset of all of the

represent remaining
objects of the scene that were activated
by the context (context neurons).

are on the AR T —
| B (B R - o (R
All of each constitute E— & it -

a cligue — a complete graph in which every
two vertices are connected by an edge.
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Topology of Hopfield networks,
with 3 neurons as an example.
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Linear transfer functions of

its neurons characterize

& the linear Hopfield network.

Classic Hopfield Networks N
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Encoding a pattern in a Hopfield network requires
to reduce the energy associated with this pattern,
thereby turning it into an attractor state through
the application of gradient descent.

attractor basin

HAE Hopfield &S 1 AE T
14wt > AR BT st D
B HRANVRE R » (A
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This process involves taking the partial derivative of
the energy with respect to the network's weights,
a concept referred to as the Hebbian learning rule.




7 = softmax (,3 R YT ) Y
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Modern Hopfield networks (MHN)

Modern Hopfield Network (MHN)
aka Dense Associative Memories

fﬁﬁ Hopfield 4&d§% (MHN) 7%
BT AR R EE T eCiE 2
FETHY 4 MR 4 2R A 2 4 L

Hopfield g% o
B i i RE = R EE A T
S B RS | A S GRATIEER 14
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FERIE &

improve classic Hopfield networks by breaking the linear link

between input features and stored memories.
This is done by introducing stronger non-linearities
in the energy function or neuron activation functions,
leading to an exponential increase in memory storage

capacity with respect to the number of feature neurons.




Comparison of Capacities of
Classic and Modern Hopfield Networks

Storage capacity of classic Hopfield Networks (HN)  Storage capacity of Modern Hopfield Networks (MHN)

trained to store multiple different patterns is: for retrieval of patterns free of errors is:
C =~ 0.14 d patterns (linear capacity), C = ~ 292 patterns (exponential capacity),
where d is the number of neurons in the network. where d is the dimension of the input,
while having extremely fast conference.
2| SRR (25 T A [E R A A% B B Hopfield 4gE& (MHN)
Hopfield &dE% (HN) HIEEFEE S RN SRR ESE S
X =~0.14d 5 (EER) - C=~2d/2 5z ({5HEe) -

' Hrh d RYERS R THIRR - Heb d i ARHEE -
_ IR R bR s -




Comparison of Deep Learning and
Hierarchical Temporal Memory (HTM)

HTM Deep Learning
{Hierarchical Temporal Memaory)

73 B EIECTE REEE
T

Learning batches %@ﬁ:ﬁ Online learning & e

H ﬁ_ . .
Neuron cell state RICSH | Ac tive/Inactive/Predictive Active/Inactive

Bk AE

Batch size need to learn Very small data is sufficient | Required huge data volume

HEXNFEEE |JFE/NNVREBREIEHT| JIRFRFERE




Thousand Brains Theory of Intelligence g
and Hierarchical Temporal Memory

Classic View Thousand Brains Theory %H%‘jﬁggﬁ% [':H ) %ﬁﬁ%ﬁlﬁ]/\j{
SO —DPDOE b ANV YIRS IR Y Se B AR A
) o mA 22 E ARy —(ERA -
B 7 EER LR (HTM)
HEITRFEE -
BT 78 T EE R A R (SRR A E S
v 8 [7A[E] TAE LRI A H SR A RAD -

https://www.numenta.com/blog/2019/10/24/machine-learning-guide-to-htm/

The states that every part of
the neocortex learns of objects and concepts
rather than learning of the world.

It uses for storage and learning.

Long range connections in the neocortex allow the models to
work together to create perception of the world.
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